On geometric discretization of elasticity

نویسنده

  • Arash Yavari
چکیده

This paper presents a geometric discretization of elasticity when the ambient space is Euclidean. This theory is built on ideas from algebraic topology, exterior calculus, and the recent developments of discrete exterior calculus. We first review some geometric ideas in continuum mechanics and show how constitutive equations of linearized elasticity, similar to those of electromagnetism, can be written in terms of a material Hodge star operator. In the discrete theory presented in this paper, instead of referring to continuum quantities, we postulate the existence of some discrete scalar-valued and vector-valued primal and dual differential forms on a discretized solid, which is assumed to be a triangulated domain. We find the discrete governing equations by requiring energy balance invariance under timedependent rigid translations and rotations of the ambient space. There are several subtle differences between the discrete and continuous theories. For example, power of tractions in the discrete theory is written on a layer of cells with a nonzero volume. We obtain the compatibility equations of this discrete theory using tools from algebraic topology. We study a discrete Cosserat medium and obtain its governing equations. Finally, we study the geometric structure of linearized elasticity and write its governing equations in a matrix form. We show that, in addition to constitutive equations, balance of angular momentum is also metric dependent; all the other governing equations are topological. © 2008 American Institute of Physics. DOI: 10.1063/1.2830977

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated modeling for complex woven mesostructures

Computational methods for modeling complex three-dlmenaional woven structure\ are reviewed and software tools for automated model construction are described. The tools make use of image processing, geometric and attribute modeling, automated discretization, and efficient solvers. The discretization techniques control me\h periodicity and volume fraction errors of meshed constituents due to appr...

متن کامل

Axioms and variational problems in surface parameterization

For a surface patch on a smooth, two-dimensional surface in IR, low-distortion parameterizations are described in terms of minimizers of suitable energy functionals. Appropriate distortion measures are derived from principles of rational mechanics, closely related to the theory of non-linear elasticity. The parameterization can be optimized with respect to the varying importance of conformality...

متن کامل

Discrete Gradient Line Fields on Surfaces

A line field on a manifold is a smooth map which assigns a tangent line to all but a finite number of points of the manifold. As such, it can be seen as a generalization of vector fields. They model a number of geometric and physical properties, e.g. the principal curvature directions dynamics on surfaces or the stress flux in elasticity. We propose a discretization of a Morse-Smale line field ...

متن کامل

Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight

An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...

متن کامل

Fast finite difference solvers for singular solutions of the elliptic Monge-Ampére equation

The elliptic Monge-Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge-Ampère...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008